Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain.

نویسندگان

  • Cindy Casteels
  • Peter Vermaelen
  • Johan Nuyts
  • Annemie Van Der Linden
  • Veerle Baekelandt
  • Luc Mortelmans
  • Guy Bormans
  • Koen Van Laere
چکیده

UNLABELLED Automated voxel-based or predefined volume-of-interest (VOI) analysis of rodent small-animal PET data is necessary for optimal use of information because the number of available resolution elements is limited. We have mapped metabolic ((18)F-FDG), dopamine transporter (DAT) (2'-(18)F-fluoroethyl(1R-2-exo-3-exe)-8-methyl-3-(4-chlorophenyl)-8-azabicyclo[3.2.1]-octane-2-carboxylate [(18)F-FECT]), and dopaminergic D(2) receptor ((11)C-raclopride) small-animal PET data onto a 3-dimensional T2-weighted MRI rat brain template oriented according to the rat brain Paxinos atlas. In this way, ligand-specific templates for sensitive analysis and accurate anatomic localization were created. Registration accuracy and test-retest and intersubject variability were investigated. Also, the feasibility of individual rat brain statistical parametric mapping (SPM) was explored for (18)F-FDG and DAT imaging of a 6-hydroxydopamine (6OHDA) model of Parkinson's disease. METHODS Ten adult Wistar rats were scanned repetitively with multitracer small-animal PET. Registrations and affine spatial normalizations were performed using SPM2. On the MRI template, a VOI map representing the major brain structures was defined according to the stereotactic atlas of Paxinos. (18)F-FDG data were count normalized to the whole-brain uptake, whereas parametric DAT and D(2) binding index images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatching. RESULTS Registration accuracy was between 0.24 and 0.86 mm. For (18)F-FDG uptake, intersubject variation ranged from 1.7% to 6.4%. For (11)C-raclopride and (18)F-FECT data, these values were 11.0% and 5.3%, respectively, for the caudate-putamen. Regional test-retest variability of metabolic normalized data ranged from 0.6% to 6.1%, whereas the test-retest variability of the caudate-putamen was 14.0% for (11)C-raclopride and 7.7% for (18)F-FECT. SPM analysis of 3 individual 6OHDA rats showed severe hypometabolism in the ipsilateral sensorimotor cortex (P </= 0.0004) and a striatal decrease in DAT availability (P </= 0.0005, corrected). CONCLUSION MRI-based small-animal PET templates facilitate accurate assessment and spatial localization of rat brain function using VOI or voxel-based analysis. Regional intersubject and test-retest variations found in this study, as well as registration errors, indicate that accuracy comparable to the human situation can be achieved. Therefore, small-animal PET with advanced image processing is likely to play a useful role in detailed in vivo molecular imaging of the rat brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction and Evaluation of Quantitative Small-Animal PET Probabilistic Atlases for [18F]FDG and [18F]FECT Functional Mapping of the Mouse Brain

UNLABELLED Automated voxel-based or pre-defined volume-of-interest (VOI) analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([(18)F]FDG) and dopamine transporter ([(18)F]FECT) small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM) mouse brain template and aligned th...

متن کامل

Analyzing functional brain images in a probabilistic atlas: a validation of subvolume thresholding.

PURPOSE The development of structural probabilistic brain atlases provides the framework for new analytic methods capable of combining anatomic information with the statistical mapping of functional brain data. Approaches for statistical mapping that utilize information about the anatomic variability and registration errors of a population within the Talairach atlas space will enhance our under...

متن کامل

Unbiased diffeomorphic atlas construction for computational anatomy.

Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and help tissue and object segmentation via registration of anatomical labels. Common techniques o...

متن کامل

BRAIN MAPPING IN NEUROSURGERY

Background and Aim: Brain mapping is a study of the anatomy and function of the CNS (central nervous system). Brain mapping has many techniques and these techniques are permanently changing and updating. From the beginning, brain mapping was invasive and for brain mapping, electrical stimulation of the exposed brain was needed. However, nowadays brain mapping does not require electrical stimula...

متن کامل

P 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images

Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's&nbsp;disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 47 11  شماره 

صفحات  -

تاریخ انتشار 2006